Gliflozins, such as dapagliflozin, belong to a class of drugs that inhibit the sodium-glucose cotransporter 2. Gliflozins have been found to raise glucagon levels, a hormone secreted from pancreatic islet α-cells, which can trigger ketosis. However, the precise mechanisms through which gliflozins increase glucagon secretion remain poorly understood. In addition, gliflozins induce osmotic diuresis, resulting in increased urine volume and plasma osmolality. In this study, we investigated the hypothesis that a compensatory increase in arginine-vasopressin (AVP) mediates dapagliflozin-induced increases in glucagon in vivo. We show that dapagliflozin does not increase glucagon secretion in the perfused mouse pancreas, neither at clinical nor at supra-clinical doses. In contrast, AVP potently increases glucagon secretion. In vivo, dapagliflozin increased plasma glucagon, osmolality, and AVP. An oral load with hypertonic saline amplified dapagliflozin-induced glucagon secretion. Notably, a similar increase in glucagon could also be elicited by dehydration, evoked by 24-h water restriction. Conversely, blockade of vasopressin 1b receptor signaling, with either pharmacological antagonism or knockout of the receptor, resulted in reduced dapagliflozin-induced glucagon secretion in response to both dapagliflozin and dehydration. Finally, blocking vasopressin 1b receptor signaling in a mouse model of type 1 diabetes diminished the glucagon-promoting and ketogenic effects of dapagliflozin. Collectively, our data suggest that AVP is an important regulator of glucagon release during both drug-induced and physiological dehydration.NEW & NOTEWORTHY Gliflozin-induced ketogenic effects partly result from increased glucagon levels. This study shows that dapagliflozin-triggered glucagon secretion is not directly mediated by the pancreas but rather linked to arginine-vasopressin (AVP). Dehydration, common in diabetic ketoacidosis, elevates AVP, potentially explaining the increased ketoacidosis risk in gliflozin-treated patients. Thus, our results highlight AVP as a potential therapeutic target to mitigate the risk of ketoacidosis associated with gliflozin treatments in patients with diabetes.
Pancreas
,Animals
,Mice, Inbred C57BL
,Mice, Knockout
,Mice
,Dehydration
,Benzhydryl Compounds
,Glucagon
,Glucosides
,Receptors, Vasopressin
,Male
,Arginine Vasopressin
,Sodium-Glucose Transporter 2 Inhibitors